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Interpenetration of fractal clusters drives elasticity
in colloidal gels formed upon flow cessation

Noémie Dagès,a Louis V. Bouthier, b Lauren Matthews, c Sébastien Manneville,a

Thibaut Divoux, a Arnaud Poulesquend and Thomas Gibaud *a

Colloidal gels are out-of-equilibrium soft solids composed of attractive Brownian particles that form a

space-spanning network at low volume fractions. The elastic properties of these systems result from the

network microstructure, which is very sensitive to shear history. Here, we take advantage of such

sensitivity to tune the viscoelastic properties of a colloidal gel made of carbon black nanoparticles.

Starting from a fluidized state at an applied shear rate _g0, we use an abrupt flow cessation to trigger a

liquid-to-solid transition. We observe that the resulting gel is all the more elastic when the shear rate _g0

is low and that the viscoelastic spectra can be mapped on a master curve. Moreover, coupling

rheometry to small angle X-ray scattering allows us to show that the gel microstructure is different from

gels solely formed by thermal agitation where only two length scales are observed: the dimension of the

colloidal and the dimension of the fractal aggregates. Competition between shear and thermal energy

leads to gels with three characteristic length scales. Such gels structure in a percolated network of

fractal clusters that interpenetrate each other. Experiments on gels prepared with various shear histories

reveal that cluster interpenetration increases with decreasing values of the shear rate _g0 applied before

flow cessation. These observations strongly suggest that cluster interpenetration drives the gel elasticity,

which we confirm using a structural model. Our results, which are in stark contrast to previous literature,

where gel elasticity was either linked to cluster connectivity or to bending modes, highlight a novel local

parameter controlling the macroscopic viscoelastic properties of colloidal gels.

1 Introduction

Colloidal gels are out-of-equilibrium amorphous soft solids
composed of attractive Brownian particles that aggregate to
form a space-spanning network at low concentrations.1 These
viscoelastic materials are ubiquitous both in nature and in
industrial applications as diverse as flow batteries, food pro-
ducts and cementitious materials.2–5 The scenario underlying
their formation, namely the sol–gel transition, governs the vast
majority of their structural and mechanical properties.
In practice, Brownian motion is the driving force that allows
colloids to encounter each other, whereas the colloid concen-
tration f and the interaction potential U set up the aggregation
path and the final gel properties.6,7 In the limit of low concen-
trations and high interparticle attraction strength, diffusion-
limited or reaction-limited cluster aggregation take place and

lead to the formation of fractal gels8,9 characterised by two
length scales, the particle radius r0 and the cluster size xc of
fractal dimension df. At intermediate volume fractions and for
moderate attraction strength, the sol–gel transition corre-
sponds to an arrested phase separation.10–12 In the former
situation, the gel mechanical properties are captured by fractal
scaling,13,14 whereas in the latter case, the gel properties are set
by the connectivity of glassy clusters15,16 or by the stretching
and bending rigidity of the glassy network.17

Because colloidal gels are out-of-equilibrium, additional
parameters play a key role in controlling their properties.
External fields that act on the colloid dynamics and compete
with Brownian motion may disrupt the direct correspondence
between the gel properties and their coordinates (f, U) in the
state diagram, leading to gels with a broad variety of structural
and mechanical properties from a single colloidal dispersion.
Indeed, the energy landscape of suspensions of attractive
colloids is complex and strewn with multiple local minima
(Fig. 1). Some of those minima are only accessible with an
additional input of energy, larger than the thermal energy kBT.
This is precisely the role of external stimuli, leading gelation
into local minima inaccessible via Brownian motion. Therefore,
the properties of multiple metastable colloidal gels are a
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function of the external stimuli intensity. At the fundamental
level, an external stimulus is ideal for exploring the interplay
between the microstructure and mechanics: as the gel origi-
nates from the same dispersion, the colloid volume fraction
and interactions remain unchanged, while variations in the
gel mechanical properties only result from microstructural changes.
In practice, different external control parameters such as tempera-
ture and external shear have been used as external stimuli. For
instance, the microstructure of globular protein gels can be tuned
by varying the quench rate during the sol–gel transition: the faster
the temperature quenches, the smaller the characteristic length of
the gel network.18 In colloidal gels built from depletion interaction,
flow cessation from a shear rate of intensity _g0 to 0 s�1 leads to gels,
whose structure and rheology are governed by the intensity of the
preshear _g0: a high preshear _g0 leads to homogeneous and strong
gels whereas a low preshear _g0 leads to heterogeneous and weak
gels.19 In dispersions of fractal-like particles with attractive inter-
particle interactions, stress-controlled flow cessation at various
cessation rates yields gels whose strength and connectivity increase
for an increasing cessation rate.20

Despite multiple pieces of evidence that the mechanical
properties of colloidal gels can be tuned by an external stimulus,
a quantitative correspondence between the gel microstructure and
its mechanical properties is still lacking. We have chosen to take
up this challenge in the case of mechanical shear applied to
particulate colloidal gels with non-covalent interactions for three
reasons. First, such colloidal gels can be rejuvenated by shear,
i.e., their microstructure can be reconfigured by an external shear
of large enough magnitude for a long enough duration, before the
gel reforms upon flow cessation.21,22 Shear rejuvenation allows us
to conveniently explore different gelation scenarios on the same
sample. Second, it is already well established that shear may
interfere with the gelation pathway of particulate colloidal gels,
thus giving the opportunity to tune gels in terms of the
microstructure,19,23 connectivity20 or yield stress.24 Third, on
the application level, such an interplay between shear and
gelation is involved in numerous industrial processes, and
especially in additive manufacturing where external fields such
as an additional shear coupled with 3D printing allow tuning the
microstructure and the properties of the printed materials.25

In practice, we choose to work with gels of carbon black nano-
particles whose properties can be tuned using shear history.20,24,26

Here we influence the gelation pathway of these gels as follows:

starting from a fluidized state at an applied shear rate _g0, an
abrupt flow cessation triggers a liquid-to-solid transition. Varying
the shear rate intensity _g0 allows us to generate gels whose
viscoelastic properties span over a decade in stress units. Speci-
fically, lower shear intensities yield more elastic gels upon flow
cessation, while the viscoelastic spectrum for different _g0 shows a
robust frequency dependence that can be rescaled onto a master
curve. Using rheometry coupled to small angle X-ray scattering
(SAXS), we further show that the gel microstructure is composed
of clusters of size xc and fractal dimension df separated by a
cluster center to center distance xs. These structural parameters
depend on _g0. More importantly, we show that xs o xc means that
adjacent clusters interpenetrate each other. The degree of inter-
penetration defined by the xc/xs ratio decreases for increasing
values of _g0. The degree of interpenetration is crucial, as it controls
the gel elasticity and captures the impact of _g0 on the gel
viscoelastic properties, as confirmed by a fractal scaling model.

The outline of the paper is as follows. We first introduce
carbon black gels as well as our experimental toolbox in Section
2. Second, in Section 3, we present our experimental results.
We show how shear history allows tuning the gel viscoelastic
properties, which can be rescaled onto a master curve. We then
establish that the gel structures in fractal clusters interpene-
trate each other. Third, in Section 4, after dismissing a super-
position principle to account for the scaling of the viscoelastic
properties of the gel, we derive a fractal scaling model estab-
lishing a direct link between the gel microstructure and the gel
network elasticity as a function of the shear rate intensity _g0

applied before flow cessation.

2 Materials and methods
2.1 Carbon black dispersions

Carbon black (CB) particles are fractal carbonated colloids that
result from the partial combustion of hydrocarbon oils.27–29

These particles are widely used in the industry for mechanical
reinforcement or to enhance the electrical conductivity of
plastic and rubber materials.30 Among the large variety of
carbon black particles,26,31–34 we choose to work with Vulcan
PF particles (Cabot, density dcb = 2.26 � 0.03). The density of
Vulcan PF particles is dcb = 2.26 � 0.03 and we estimate their
radius of gyration rg = 35 nm with a 20% polydispersity and
their fractal dimension df0 = 2.9 (see Appendix A.1 for details).

When dispersed in mineral oil (RTM17 Mineral Oil Rotational
Viscometer Standard, Paragon Scientific, viscosity Z = 354 mPa s
at T = 20 1C, density dbck = 0.871), CB particles are weakly
attractive. The depth U of the interparticle potential depends on
the type of CB particles, the solvent, and the presence of a
dispersant and falls typically in the range U B 10–30kBT.35,36

At a working weight concentration in CB particles of cw = 4%,
the particles aggregate to form a gel, i.e., a space-spanning
network, which behaves as a viscoelastic soft solid. Indeed, at
rest, the elastic modulus G0 dominates the viscous modulus G00

in the limit of low frequencies, whereas the sample displays a
solid-to-liquid transition beyond a critical strain gy B 10%.

Fig. 1 Schematic principle of the concept of multiple metastable gels in
attractive colloidal dispersions.
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Moreover, under steady shear, the flow curve that links the
shear stress s to the shear rate _g is well fitted by the Herschel–
Bulkley model, s = sy + K_gn,37 with a dynamical yield stress sy =
4.5 Pa, a consistency index K = 1.0 Pa.s1/0.83, and a fluidity index
n = 0.83 (see Fig. 8 in Appendix A.2).

2.2 Rheology

In the present work, we use a rheometer both to measure the
mechanical properties of CB gels and to shape up their micro-
structures. We carry out our experiments with two stress-
controlled rheometers: (i) an MCR301 (Anton Paar) equipped
with a rough cone (radius 40 mm, angle 11) and a smooth
bottom plate both made of steel and (ii) a Haake RS6000
(Thermo Scientific) equipped with a Couette geometry composed
of concentric polycarbonate cylinders (inner diameter 20 mm,
outer diameter 22 mm, and height 40 mm) for rheo-SAXS
experiments. Both apparatuses give identical results provided
that the shear rate does not exceed 500 s�1 in the Couette
geometry due to the Taylor–Couette instability.38

2.3 Small angle X-ray scattering

The microstructural properties of the carbon black dispersion are
investigated using rheo-SAXS measurements carried out on the
ID02 beamline at the European Synchrotron Radiation Facility
(ESRF, Grenoble, France).39 The incident X-ray beam of wavelength
0.1 nm is collimated to a vertical size of 50 mm and a horizontal
size of 100 mm. The 2D scattering patterns were measured using an
Eiger2 4M pixel array detector, and the subsequent data reduction
procedure is described elsewhere.40 The scattering intensity I(q) is
obtained by subtracting the two-dimensional scattering patterns of
the carbon black gel and the mineral oil. The resulting scattering
intensity presented in this article always remained isotropic (see
Fig. 14 in Appendix A.7). Therefore, we radially averaged the
normalized intensity pattern to obtain one dimensional I(q). Note
that measurements were performed in both radial and tangential
configurations, and they turn out to be equivalent due to the
isotropy of the gel microstructure.

2.4 Rheological protocol

We apply the protocol sketched in Fig. 2, which is divided into
two sequences: a flow cessation sequence to shape up the gel

properties followed by a sequence of characterization of the
gel mechanical properties inherited from the flow cessation
protocol.

In practice, the flow cessation protocol is divided into three
steps. First, we carry out a rejuvenation step during which the
sample is sheared at _g = 1000 s�1 for Dt = 60 s to erase any shear
history that would influence the gel mechanical properties later
on. Second, we modify the shear intensity by imposing a
quench from _g = 1000 s�1 to a constant shear rate _g0 A
[0.1,1500] s�1 for a duration Dt0 A [20,200] s. Fig. 3(a) shows
the stress response s(t) of the CB gel resulting from quenches to
various values of _g0. For high shear rates _g0, a duration of Dt0 =
20 s is sufficient to reach a steady state. However, for _g0 o 10 s�1,
we must impose _g0 for longer durations, as s increases
significantly, before reaching a maximum and then slowly
decreases. The increase of s at short time scales corresponds
to a transient regime necessary for the system to adapt to the
new shear rate _g0

42 (see also Appendix A.2). The slow decrease at
longer time scales might be due to some slippage of the
dispersion at the walls of the shear cell.43 Third, we apply a
flow cessation by imposing s = 0 Pa for 30 s, while recording the
shear-rate response _g(t) as displayed in Fig. 3(b). We observe
that _g decreases to values beneath 10�3 s�1 within a few

Fig. 2 Experimental protocol: schematic of the flow cessation and char-
acterization sequences.

Fig. 3 Flow cessation sequence performed with different values of the
shear rate _g0 in a cw = 4% carbon black dispersions. The sequence is
composed of two steps: a quench in shear rate from 1000 s�1 to _g0

yielding a stress response s(t) pictured in (a), followed by a complete flow
cessation which results in (b) the relaxation of | _g|(t) when imposing s =
0 Pa. In (a and b), colors encode the value of _g0 ranging from 1500 (black)
to 0.1 s�1 (yellow), see the legend in (b).
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seconds indicating that the rotor is immobile and that flow
cessation is complete. At short time scales, the shear rate
decreases exponentially as expected for a simple, viscous fluid.
At intermediate timescales, _g drops faster than exponentially
and displays oscillations typical of the viscoelastic ringing
observed in soft solids during creep tests.44–47 This indicates
that gels reform within a few seconds.

Finally, the characterization sequence following flow cessa-
tion consists in three steps. First, we let the system rest for
360 s, while measuring the elastic G0 and viscous G00 modulus
using oscillations of small amplitude g = 0.1% at a frequency
f = 1 Hz. As shown in Fig. 9 in Appendix A.4, the viscoelastic
moduli of the dispersion rapidly reach a regime where aging is
weak. Second, we perform a frequency sweep at g = 0.3% with
10 points per decade for frequencies f ranging from 0.02 to
20 Hz. To gain some insights into the gel microstructure during
these two sequences, the entire protocol was carried out in the
rheo-SAXS setup for four distinct shear intensities _g0. The
scattered intensity I(q) of the gel obtained after flow cessation
is discussed in the next section.

Based on ref. 48, we estimate that throughout the rheo-
logical protocol the gel is homogeneously sheared and
does not display shear banding. Indeed shear banding may
appear in carbon black suspensions. When going from a large
to a low value of the shear rate, shear banding only happens
below a critical shear rate of _gSB. _gSB is easily identifiable on
the flow curve by a drop of the shear stress s at low shear rates.
From Fig. 8, we determine _gSB B 0.1 s�1. This value justifies
carrying out preshear of intensity _g0 no lower than 0.1 s�1

to guarantee the homogeneity of the flow profile in the
rheometer.

3 Results
3.1 Impact of the shear rate _c0 on the gel linear viscoelastic
spectrum

We first focus on the impact of _g0 on the linear viscoelastic
properties of the gel formed upon flow cessation (see
‘‘Frequency sweep’’ in the characterization sequence sketched
in Fig. 2). The gel frequency spectrum is reported in Fig. 4(a) for
various values of the shear rate intensity _g0 spanning over four
decades. Overall, we observe that low _g0 produces more elastic
gels. More precisely, whatever the shear rate intensity _g0, the
elastic and viscous moduli are increasing functions of the
frequency and cross at a frequency fc that shifts towards larger
values for decreasing _g0. Moreover, in the limit of low frequen-
cies, all spectra show a plateau in elasticity with G04 G00, which
confirms the solid-like behavior of the sample, regardless of the
shear rate intensity applied prior to flow cessation. The shape
of the viscoelastic spectrum is robust and appears merely
shifted, which prompts us to construct a master curve from
the data in Fig. 4(a). By normalizing each spectrum by the
coordinate ( fc, Gc) defined by the crossover of G0 and G00, we
obtain the master curve reported in Fig. 4(b). This scaling
behavior is also clearly visible in the tan (d) = G00/G0 representa-
tion. Since G0 and G00 are scaled by the same factor, building a
master curve with tan (d) from different _g0 only requires to scale
the frequency axis as shown in Fig. 10. The asymptotic behavior
of the master curve corresponds to a Kelvin–Voigt model (see
Appendix A.5) displayed as blue lines in Fig. 4(b). At low
frequencies, i.e., f { fc, the elastic modulus G0 tends towards
a plateau value much larger than G00, which is the hallmark of a
solid-like behavior at rest. At high frequencies, i.e., f c fc, the

Fig. 4 Impact of the shear rate applied before flow cessation on the gel viscoelasticity. (a) Elastic G0 and viscous modulus G00 vs. the frequency f in a cw =
4% carbon black dispersions. The color codes for the shear rate intensity _g0 applied before flow cessation. (b) Normalized viscoelastic spectrum: G0/Gc

and G00/Gc vs. the normalized frequency f/fc, where Gc and fc denote, respectively, the modulus and the frequency at which G0 = G00 in (a). The blue curves
correspond to a Kelvin–Voigt model (see Appendix A.5). The grey curves correspond to the master curves obtained for G0 (solid line) and G00 (dashed line)
by rescaling viscoelastic spectra of CB dispersions in oil for various volume fractions [data were extracted from ref. 41]. Inset: Gc vs. fc. The red dotted line
is the best linear fit of the data: Gc = 14.5fc. (c) Evolution of Gc (top) and fc (bottom) vs. _g0. The red line is the best fit of the data using eqn (1) and the
structural information reported in Fig. 6. The best fit is obtained with a single adjustable parameter, namely the prefactor GCB = 9 Pa.
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viscous modulus G00 dominates and increases linearly with the
frequency and the solvent viscosity Z, such that G00 = 2pZf.
In this range of frequencies, the variations of G00 correspond to
the viscous dissipation due to the thermal fluctuations of the
gel network in the background solvent. We note that the master
curve can be fully fitted by a fractional Kelvin–Voigt model
(see Appendix A.5). Such a master curve is strongly reminiscent
of that obtained on fractal gels by varying the particle volume
fraction and the interparticle potential.36,41,49 In contrast, here,
the master curve is generated by varying the shear history on a
sample of fixed composition. Yet, rescaled data extracted from
ref. 41 and obtained with different CB particles suspended in
another solvent [see gray curves in Fig. 4(b)] fall remarkably
well on our master curve. This suggests that various shear
histories allow generating gels, whose microstructure shares
some similarity with that generated by varying the colloid
volume fraction.

The high sensitivity of CB gels to shear history is encoded
in the dependence of the locus of G0 and G00 crossing point
( fc, Gc) with _g0. As shown in Fig. 4(c), both fc and Gc decrease
by almost two orders of magnitude when increasing _g0 from
0.1 s�1 to 1500 s�1. Such influence of shear history is not
obvious, which shows a trend similar to that observed in
boehmite gels50 and silica sphere and rods gels51 but opposite
to that reported in depletion gels, where a strong shear yields
a more homogeneous and more elastic structure upon flow
cessation.19

3.2 Influence of the carbon black weight concentration

The rescaling and the master curve introduced in Section 3.1
are robust to changes in the CB weight concentration, from cw =
2 to 8%. For instance, the viscoelastic spectrum of a cw = 2%
carbon black dispersion obtained with various shear rate _g0

applied before flow cessation can be rescaled on the same
master curve as that displayed in Fig. 4(b) (see Fig. 12 in
Appendix A.6). Moreover, for a fixed shear intensity _g0, the
modulus Gc increases as a power law of cw, cw = (cw/C1)a with a
concentration C1 and an exponent a that depends on _g0

[Fig. 5(b)]. While a power-law increase of the gel elasticity for
increasing particle weight concentration or volume fraction is
classically reported in colloidal gels with an exponent a ranging
between 2 and 4.5 depending on the range of the interparticle
potential and the nature of the particles,1,36,52 the sensitivity of
a to shear history is a key result of the present study. Here, in
Fig. 5(b), we show that a increases for increasing shear rate
intensity applied before flow cessation varying between a C 3
for _g0 = 0.1 s�1 to surprisingly high values, i.e. a C 7 for _g0 =
1500 s�1. Finally, in Fig. 5(c), we show that Gc follows a master
curve driven by a dimensionless concentration and shear rate
intensity. Although this dependence remains empirical, this
master curve highlights the fact that there are many ways to
obtain gels with identical Gc. For instance to get Gc C 3 Pa, one
can either prepare a gel at cw = 4%, _g0 = 1500 s�1; cw = 3%, _g0 =
100 s�1; or cw = 2%, _g0 = 2 s�1.

To connect these results to the gel microstructure, one can
be tempted to combine the power-law exponent a with the
scaling theories developed for fractal gels,13 in order to esti-
mate the cluster fractal dimension df. The theory developed in
the context of Brownian aggregation distinguishes between two
types of networks, depending on the relative value of the elastic
constant of the inter-cluster links to that of the cluster. In the
case of weak links, a = 1/(3 � df), which yields 2.6 o df o 2.9,
whereas in the case of strong links, a = (3 + x)/(3 � df) with x o
df the fractal dimension of the gel backbone, which yields 1.5 o
df o 2.5 (see Fig. 13 in Appendix A.6). These values motivate an
experimental characterization of the gel microstructure, and

Fig. 5 Influence of the carbon black weight concentration. (a) Evolution of Gc as a function of the weight concentration in carbon black particles cw for
various shear rates applied prior to flow cessation: _g0 = 0.1 s�1 (circle), 2 s�1 (diamond), 100 s�1 (triangle) and 1500 s�1 (square). Red lines are the best
power-law fit of the data Gc = (cw/C1)

a. Both a and C1 depend on _g0. (b) a and C1 vs. the shear rate _g0. Red lines are the best logarithmic fit of the data:

a ¼ log10 _g0
�

_G1

� �
with _G1 ¼ 10�3:9 s�1 and C1 ¼ C2 log10 _g0

�
_G2

� �
with C2 = 0.7% and _G2 ¼ 0:015 s�1. Dotted lines are the best power law fits. (c) Evolution of

Gc as a function of the dimensionless concentration and the shear rate.
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especially of the cluster fractal dimension to test the relevance
of such scaling theories.

3.3 Microstructure of the gel as a function of the shear _c0

applied before flow cessation

To better understand the interplay between the shear history
and the gel microstructural properties, we perform rheo-SAXS
experiments using the protocol sketched in Fig. 2. The scatter-
ing intensity I(q) measured 360 s after the flow cessation
protocol for four different shear rate intensities _g0 prior to flow
cessation is reported in Fig. 6(a), as a function of the wave
number q. In all four cases, the scattered intensity I(q) presents
similar features. First, I(q) is isotropic, i.e., tangential and radial
measurements are equivalent (see Fig. 14 in Appendix A.7).
Therefore, the gel displays an isotropic structure at all length
scales probed by SAXS, which is why we only report the
azimuthally averaged I(q). Second, I(q) presents three character-
istic bumps around 0.04, 0.01 and 0.002 nm�1 characteristic
of three length scales. This structure is atypical. Indeed, in
gels driven solely by thermal agitation, I(q) classically displays
only two characteristic length scales: the particle size r0

and the cluster size xc separated by a power-law regime, and
the exponent of which is related to the cluster fractal
dimension.53

Here, we attribute the high-q bump to the CB particles of
size r0, the low-q bump to clusters of size xc and fractal
dimension df, and the bump at intermediate q to the structural
distance xs between the centers of two adjacent clusters. These
bumps appear more clearly in the Kratky-like representation

I�qdf reported in Fig. 6(a). In the Kratky-like representation,
we used the df displayed in Fig. 6(b).

A description of the gel microstructure based on three
characteristic length scales is implemented in a modified
two-level Beaucage model. In short, the two-level Beaucage
model54,55 accounts for the scattering of clusters of size xc

and fractal dimension df composed of particles of size r0.
To account for the increase of scattering at xs, we have multiplied
the cluster scattering intensity term in the Beaucage model by an
ad hoc inter-cluster structure factor (see Appendix A.7 for more
details). This modified Beaucage model provides an excellent fit
for the experimental data obtained for different shear histories
[Fig. 6(a)]. Moreover, since the gel weight concentration is iden-
tical in the four measurements, the fit parameters r0, xc, df and xs

should obey mass conservation. In practice, such a constraint can
be expressed at the scale of the unit cell of the gel network, i.e., the
minimum structural repeating unit necessary to construct the gel
structure defined by the correlation length xs. The number of
particles N = (xc/r0)df in a unit cell corresponds to the number of
particles in the cluster of size xc and fractal dimension df. Based
on the values of the fit parameters obtained from adjusting the
modified two-level Beaucage model to the SAXS data, we check
that, indeed, r = (xc/r0)df/xs

3 remains constant across the four
measurements with r = 7250 � 230 particles per mm3. This value
is also in agreement with the carbon black weight concentration
cw = 4% (see Fig. 16 in Appendix A.7), which confirms that our
analysis of the scattering data is self-consistent.

Fig. 6(b) shows the dependence of the fit parameters xc, xs,
and df with the shear rate intensity _g0 applied before flow

Fig. 6 Structure of the gel obtained after flow cessation. The scattering intensity I(q) is measured 360 s after the end of the flow cessation test for
different preshear _g0 in carbon black dispersions at cw = 4%. (a) The thick lines represent the evolution of I(q) (top) and I�qdf (bottom) as a function of the
wave vector q. Color codes from pink to black for _g0 = 0.1, 2, 20 and 100 s�1. The dotted line is the form factor obtained at cw = 0.1%. Red lines are fit to
the experimental data by a two-level Beaucage model composed of the CB particles of radius r0 and clusters of size xc with the fractal dimension df,
modified by an intercluster structure factor that accounts for the center-to-center distance xs between the clusters. The scattering intensity I(q) and I�qdf

are translated along the y-axis for better readability. (b) Evolution of the fit parameters xc (green diamond), xs (pink star), xc/xs (circle), and df (square) as a
function of _g0. For the four fits, we obtained the radius of gyration r0 = 28.5 nm. (c) Schematic of the evolution of the clusters as the preshear _g0 decreases
between the top and bottom panels.
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cessation. A gel prepared with a lower shear intensity shows a
larger and looser microstructure since xc increases and df

decreases for decreasing _g0. Considering the evolution of only
those two parameters suggests a decrease of the gel elasticity
for decreasing values of _g0, in stark contrast with our observa-
tions. However, xc and df are not the only parameters, and the
correlation length xs, which corresponds to the cluster to
cluster center distance, plays an important role. In particular,
xs is smaller than the cluster size xc, indicating that the clusters
interpenetrate each other. Such cluster interpenetration has
recently been suggested in carbon black gels to interpret step-
down shear rate rheology experiments.56 In our case, for lower
shear rate intensity _g0 prior to flow cessation, the ratio xc/xs

increases, i.e., the clusters become more interpenetrated,
accounting for the reinforcement of the gel elasticity.
We therefore hypothesize that the gel elasticity is related to
the cluster interpenetration, increasing the elasticity of the gel
network as compared to the case where clusters would be
packed in a random close-packing configuration [Fig. 6(c)].

3.4 A structure-based model to account for the gel elasticity

There are numerous models accounting for the elastic proper-
ties of fractal gels derived from microscopic considerations,
namely the f-power law models, especially in the context of
diffusion-limited cluster aggregation (DLCA) and reaction-
limited cluster aggregation (RLCA).13,57–65 However, these
models do not take into consideration the case where shear
history interferes with the gelation pathway activated by ther-
mal energy. Therefore, unsurprisingly, such models cannot
capture our observations (see Fig. 13 in Appendix A.7). These
models notably predict that the cluster size xc is set by its fractal
dimension df, the particle volume fraction f and the particle
size r0 in stark contrast with our observations where the shear
applied prior to flow cessation appears as an additional key
parameter that acts on the gel structure. Moreover, in these
models, the elastic properties of colloidal gels are either con-
nected to the local bending cost of the particle network or to the
cluster connectivity. However, to the best of our knowledge,
none of these approaches accounts for an overlap, or equiva-
lently for an interpenetration, of two neighboring clusters.

Here, we introduce the interpenetration f-power law model.
This model is an implementation of the f-power law models
proposed in ref. 13, 64 and 65. In practice, we assume that the
gel is composed of particles of size r0 that form clusters of size
xc and fractal dimension df separated by a center-to-center
distance xs. If xs 4 xc, the clusters are independent and the
dispersion is a fluid. However, if xs o xc, clusters interpenetrate
each other and form a gel. We have mostly replaced the factor
from the f-power law models that account for the elasticity of
two adjacent clusters by an elongation elasticity due to the
interpenetration. We assumed a decomposition of the micro-
scopic stiffnesses in three contributions as springs in series,
namely the intra-cluster, the intermicroscopic, and the inter-
penetration, respectively. We additionally assumed that the
interpenetration stiffness is negligible at the microscopic scale,
thus dominating the macroscopic rheological behaviour.

The gel elastic modulus G01 at low frequencies is calculated
in Appendix A.8 and yields the following expression:

G01 ¼
U

r0d2|{z}
GCB

1

2

xc
r0

� �df

1þ xs
2xc

� �df
3

1� xs
xc

� �2df
3

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
gInterp

f
xs
r0

� �2�df

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
gNet

(1)

This expression displays an elasticity that follows the hierarch-
ical structural properties of the gel. GCB is the elasticity arising
from colloid–colloid interactions where U and d are, respec-
tively, the depth and the range of the carbon black attraction.
gInterp corresponds to the scaling that accounts for the cluster–
cluster interpenetration and gNet is the scaling attributed to the
network formed by the clusters at the macroscopic scale.

To test the relevance of the interpenetration f-power law
model, we report in Fig. 4(c) the best fit of Gc as a function of
the _g0 using eqn (1) with the values of the structural parameters
inferred from Fig. 6(b), the fact that G01 ¼ 0:3Gc (see Appendix
A.8), and the sole adjustable parameter GCB = 9 Pa. The model
correctly captures the decrease of the elasticity of the gel
network as _g0 increases. However, taking U = 10kBT and
d = 0.2r0, we obtain GCB B 2000 Pa, a value much larger than
the fit value: the model fails to capture the absolute value of the
gel elasticity.

The interpenetration f-power law model thus shows that
cluster interpenetration accounts for the scaling of the mechan-
ical properties of the gels and allows to rationalize the counter-
intuitive observation that lower shear rate intensities before
flow cessation yield stronger gels. Such results raise open
questions, which are listed below.

4 Discussion

We have used mechanical shear to explore various configura-
tions of carbon black gels. Starting from a fluidized state under
an applied shear rate _g0, we use an abrupt flow cessation to
trigger a liquid-to-solid transition. Varying _g0 allows us to tune
the gel viscoelastic properties, whose spectrum can be mapped
on a single master curve asymptotically defined at low frequen-
cies by the elasticity of the gel network GN and at high
frequencies by the viscosity Z of the background solvent.
Coupling rheometry and SAXS, we have shown that the gel
microstructure is composed of fractal clusters that interpene-
trate each other, and the degree of interpenetration appears to
be a key parameter contributing to the gel elasticity. We have
validated this hypothesis by developing an interpenetration
f-power law model that accounts for the decrease of elasticity
as _g0 increases.

4.1 Is the scaling behavior of the viscoelastic spectrum a
consequence of an underlying superposition principle?

In light of the scaling behavior of the viscoelastic spectrum, it is
tempting to interpret the master curve obtained by varying _g0 as
the result of some shear-frequency superposition principle.
Superposition principles in soft matter mechanics rely on the
idea that dynamical processes in soft materials can be accessed
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equivalently using time or frequency and another well-chosen
variable. For example, time-temperature superposition in poly-
mer melts66 relies on the acceleration of all activated processes
at high temperatures, enabling probing of longer effective time
scales at high temperatures. In other words, the average relaxa-
tion time of the material changes with temperature without
affecting the shape of its viscoelastic spectrum.

This is not what we observe here, for the rescaling of the
viscoelastic spectrum, a shift along the frequency axis and a
shift along the viscoelastic moduli are required. Such behavior
has, however, been observed in different systems and still
attributed to a superposition principle such as in colloidal
low-methoxyl pectin67 in the context of gelling time/relaxation
time superposition, in protein condensates68 in the context of
aging Maxwell fluids, in triblock copolymer solutions69 in
the context of time-composition superposition, and in soft
colloidal glasses70,71 in the context of time-concentration super-
position. In the case of carbon black gels subject to various
shear rate intensities before flow cessation, the viscoelastic
spectrum scaling is attributed to deep structural changes, such
as the cluster fractal dimension df (the gel does not have self-
similar structures) rather than changes in the dynamics. Such
results rule out a superposition principle. In other words, it is
possible to form carbon black gels with the same value of the
elastic plateau GN using different gels structures through shear
history and concentration as shown in Fig. 5(c).

4.2 Physical origin of the gel structure

The multiple metastable gels formed following various shear
preparations belong to the category of fractal gels. This is
probably why our results do not match the trends observed in
ref. 19 which belong to gels formed through arrested phase
separation. We find clusters of fractal dimension df A [2.3,2.5]
larger than the prediction from diffusion-limited cluster
aggregation DLCA where df B 1.88 or reaction-limited cluster
aggregation RLCA where df B 2.19 but smaller than the value
obtained for sheared fractal aggregates where df B 2.6.57

In our system, the Brownian time tB = R36pZ/kBT A
[0.07;1600] s is set by the diffusion of particles of size R ranging
from the CB dimension r0 = 35 nm to the cluster size xc B 1 mm.
tB compares to the time necessary for flow cessation to take
place tfc o 4 s (Fig. 3) supporting again the fact that aggrega-
tion and flow cessation are coupled.

The interplay between flow and structure in gels has been
tackled mainly in the flow regime34,72 but has not been for-
malized to model multiple metastable gel states induced by a
shear protocol. This is an important challenge in the pursue of
memory materials73 that aim to encode, access, and erase
signatures of history in the state of a system.

The flow cessation protocol inducing the sol–gel transition
could be addressed qualitatively through the use of the Mason
number Mn,74,75 which is here in the range [3.5 � 10�4, 5.2]
and agrees rather well with the values in ref. 75 and 76 or
the adhesion number Ad,77–79 which is here in the range
[3.6, 5.5 � 104] weighing the relative importance of adhesion
forces compared to shear forces and quantitatively using

coagulation–fragmentation equation80–82 which embraces the
competition between different aggregation mechanism and
fragmentation through shear or collisions.

Finally, we suggest another way to apprehend the multiple
metastable gels formed through flow cessation. Indeed, carbon
black gels as many other systems display delayed yielding,83–85

i.e., when pushed at a constant shear stress s, the gel initially at
rest will start flowing on time scales that decrease exponentially
with increasing value of s. Our results prompt us to revisit
delayed yielding phenomena and answer the following ques-
tions: how does gel prepared through flow cessation impact the
delayed yielding mechanism? Is delayed yielding still charac-
terized by an Arrhenius law? If so, is the energy barrier
necessary to flow in the delayed yielding experiment related
to the energy barrier to form the gel state induced by flow
cessation?

5 Conclusions

In conclusion, we have quantified the impact of shear history
on the viscoelastic properties of carbon black gels. We observe
that, for a fixed content in nanoparticles, low shear intensities
yield strong gels upon flow cessation, whereas larger shear
intensities yield weaker gels. Such a variation in the gel
strength was linked to the degree of interpenetration of the
clusters that compose the gel microstructure. In that frame-
work, we have introduced a mechanical model, the interpene-
tration f-power law model, that captures the impact of shear
history on the gel elasticity, yielding a prediction for the scaling
exponent that links the gel elasticity to the gel structural
properties. These results highlight the power of shear history
as an experimental tool to tune the viscoelastic properties of
colloidal gels without changing the content in nanoparticles or
their interactions.

The viscoelastic spectrum36 and the non-linear gel proper-
ties such as delayed yielding84 observed in the carbon black
gels are also observed in many other colloidal gels; we therefore
believe that cluster interpenetration could also be quite a
general concept applicable in attractive colloidal systems.
In addition, our work raises several fundamental questions,
such as predicting for any type of colloids, the respective
contributions of cluster interpenetration, cluster connectivity,
and bending to a colloidal gel elasticity. Finally, future work
could focus on determining the role of cluster interpenetration
in the gel non-linear mechanical response, which might be
a versatile parameter to tune the failure scenario of soft
viscoelastic gels.
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A Appendix
A.1 Carbon black particles

Fig. 7 shows the scattering intensity vs. wave vector q for a
dilute dispersion of CB particles (Vulcan PF, Cabot). Individual
CB particles are fractal-like particles composed of fused nano-
particles of carbon,29,32 which motivates the use of a mass
fractal model86 to fit I(q). The fit yields a radius of gyration
rg = 35 nm with 20% polydispersity and a fractal dimension
df0 = 2.9. Density measurements of CB powder were performed
using a helium pycnometer (AccuPyc II 1340, Micromeritics).
Before the measurements, the powder was dried in an oven at
80 1C for 72 hours (2% in weight was lost). Two sets of
measurements were done with 5 measurements in a row for
the first sample (m = 0.8619 g) and 10 measurements in a row
for the second sample (m = 0.779 g). The samples were poured
into a 10 cm3 aluminum vessel. We obtained a density of the
carbon black particles dcb = 2.26 � 0.03.

A.2 Flow properties of carbon black gels

Fig. 8 reports the flow curve s( _g) of a cw = 4% w CB dispersion
obtained by a decreasing ramp of shear rate. The flow curve is
fitted with a Herschel–Bulkley model, s = sy + K _gn, and yields a
dynamical yield stress sy = 4.5 Pa, a fluidity index n = 0.83, and a
consistency index K = 1.0 Pa s1/0.83. In Fig. 8, we also show the
flow curve extracted from the preshear at _g0. We observe that
those flow curves are not stationary. This is mostly due to the
fact that the dispersion needs time to adapt from the jump in
shear from 1000 s�1 to _g0.

A.3 Evolution of the viscoelastic modulus during the rest

During the rest period that follows the flow cessation protocol,
we measured the viscoelastic moduli of the dispersion in its

linear regime, Fig. 9. For high _g0, the gel reaches within B100 s
a regime where aging becomes very slow. For low _g0, this slow
aging regime is reached within a few seconds.

A.4 tan (d) representation of the viscoelastic spectrum

Alternatively, the viscoelastic spectra plotted in Fig. 4a may be
represented by tan (d) = G00/G0 as a function of the frequency f,
Fig. 10a. In this representation, tan (d) 4 1 indicates that
dissipation dominates the rheological behavior whereas
tan (d) o 1 indicates a solid-like behavior at the corresponding
frequency. In Fig. 4b, the viscoelastic spectrum is rescaled
according to the coordinate ( fc, Gc). In the tan (d) representa-
tion as G0 and G00 are rescaled by the same factor Gc only the
frequency axis needs to be rescaled. The tan (d) measured for
different _g0 scales on a master curve is displayed in Fig. 10b.

Fig. 7 Scattering intensity I vs. scattering wave number q of dilute
dispersion of carbon black Vulcan PF nanoparticles in the RTM17 mineral
oil (cw = 0.01%). The red line is a mass fractal fit of such a form factor using
a fractal dimension df0 = 2.9 and a Schulz particle radius distribution P(r)
centered on a radius of gyration rg = 35 nm (dashed line) with a
polydispersity of 20% as shown in the inset.

Fig. 8 Flow curve of the carbon black dispersion at cw = 4% w showing
the evolution of the measured stress s as a function of the imposed shear
rate _g. _g is ramped down then up between 1500 s�1 and 0.015 s�1 with
10 points per decade at a rate of one point every 1 s. The red line is a
Herschel–Bulkley fit. Unstationnary flow curve extracted from the pre-
ashear at _g0 in Fig. 3b at t = 1 s (�), at the maximum of s (+) and at the end
of the protocol (*).

Fig. 9 Evolution of the viscoelastic moduli during the rest just after the
Flow cessation protocol. The viscoelastic moduli G0 (line) and G00 (dash) are
measured during 360 s at an oscillation amplitude of g = 0.1% and a
frequency of f = 1 Hz.
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A.5 Model for the normalized viscoelastic spectrum of carbon
black gels

The master curve reported in Fig. 6 is fitted using a Kelvin–
Voigt model and a fractional Kelvin–Voigt model,87 as illu-
strated in Fig. 11. The fractional Kelvin–Voigt model consists
of two springpots in parallel, defined by their quasi-properties
ðV; EÞ and their dimensionless exponents (a, b). Each spring-
pot can be understood as a mechanical element having inter-
mediate properties between that of spring when its exponent is
0 and a dashpot when its exponent is 1. The resolution of the
fractional Kelvin–Voigt model leads to

G0 ¼ Ef b cosðbp=2Þ þ Vf a cosðap=2Þ

G00 ¼ Ef b sinðbp=2Þ þ Vf a sinðap=2Þ

(
(2)

In the limit where a = 1 and b = 0, we recover the classical
Kelvin–Voigt model, which is defined by a dashpot of viscosity Z
in parallel with a spring of elasticity GN.

G0 ¼ E ¼ G1

G00 ¼ Vf ¼ 2pZf

(
(3)

As shown in Fig. 11, the fractional model fits relatively well the
normalized viscoelastic spectrum of carbon black gels in mineral
oil using V=Gc ¼ 0:56; a ¼ 0:91ð Þ and E=Gc ¼ 1:09; b ¼ 0:11ð Þ.
Its classical counterpart can only capture the asymptotic behavior
of the viscoelastic spectrum, i.e., the network elasticity GN =
G0( f { fc) and the background viscosity Z = G00 ( f c fc)/(2pf ).
We note that GN = 0.3Gc.

A.6 Influence of the concentration cw

Following the protocol displayed in Fig. 2, we test the influence
of the concentration for cw = 2, 3, 6 and 8% in addition to
cw = 4%. Such concentration series are presented in Fig. 12 for
_g0 = 1500 s�1. We observe that high concentrations shift the
viscoelastic spectrum to higher elasticities. The cross over point
is not always reachable within the frequency window. We scale
the viscoelastic spectrum G0, G00 on the master curve displayed
in Fig. 4b to determine ( fc, Gc) and plot the results in Fig. 5.

Fig. 11 Model of the normalized viscoelastic spectrum. Evolution of the
normalized elastic G0/Gc (grey line) and viscous G00/Gc (dashed grey line)
moduli as a function of the frequency f/fc, extracted from ref. 41 (fc, Gc) are
the coordinates of the crossover between G0 and G00. The Kelvin–Voigt
model is pictured in blue and the fractional Kelvin–Voigt model in red.

Fig. 12 Evolution of the viscoelastic spectrum for different gel concen-
tration cw at _g0 = 1500 s�1. (a) G0 (line) and G00 (dash) as a function of f. The
concentration varied from cw = 2 (blue) to 8% (green). (b) Rescaled
viscoelastic spectrum. The grey curves are taken from ref. 41 and corre-
spond to the master curve obtained by scaling a concentration series of
carbon black dispersion in oil.

Fig. 13 Fractal dimension df as a function of the shear step _g0. Measure-
ments of df extracted from the SAXS fit in Fig. 6 (square) and evaluated
from Fig. 5 using the weak link model (circle) and the strong link model
(diamond) from ref. 13. The fractal dimension x of the gel backbone has
been varied from x = 1.5 (light blue) to x = 2.5 (dark blue) in the strong link
model.

Fig. 10 The tan (d) representation of the viscoelastic spectrum measured
in Fig. 4a and b: (a) tan (d) as a function of the frequency f and (b) tan (d) as a
function of the normalized frequency f/fc.
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A.7 Analysis of the rheo-SAXS data

The CB gel scattered intensities Irad(q) and Itan(q) are, respec-
tively, measured in the radial and the tangential configuration.
In the radial configuration, the X-ray beam probes the micro-
structure in the flow-vorticity plane, while in the tangential
configuration, the X-ray beam probes the sample along the
velocity gradient-vorticity plane as a sketch in Fig. 14. After the
rest of the protocol from Fig. 2, the radial and tangential
scattered intensities are compared. More precisely the radial
scattering Irad is decomposed in its perpendicular Irad> and
parallel Irad8 components. In Fig. 14, we observe that Itan = Irad> =
Irad8. The scattering intensity is isotropic and equal in all
configurations. For better statistics, we focus on the tangential
signal and radially average its 2D spectrum. In the paper,
we note I(q) = Itan(q).

The intensity scattered by the carbon black is fitted in a log
scale using a modified Beaucage model,54,55,88 Fig. 15:

IðqÞ ¼ G1 exp �q2r1
2

3

� 	2
þB1 exp �q2r2

2

3

� 	
q
�p1
1


 �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Beaucage; Cluster level; I1

� 1þ C0
q
qs

� 	2
þ qs

q

� 	2� ��1" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Inter-Cluster structure; S1

þ G2 exp �q2r2
2

3

� 	2
þB2q

�p2
2

� ��1" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Inter-Cluster structure; I1

with q�i¼1;2 ¼ q erf
qriffiffiffi
6
p
� �� ��3

(4)

In eqn (4), I2(q) refers to scattering due to the CB particle of
size r0 = r2 and fractal dimension df0 = �p2. The scattering due
to the clusters of size xc = r1 and fractal dimension df = �p1 is
contained in the term I1(q). The modification of the two-level
Beaucage model consists in introducing an inter-cluster struc-
ture factor S1(q) that accounts for the center-to-center distance

between adjacent clusters, xs = 2p/qs. S1(q) is a function that
peaks at qs to a maximum value S1(qs) = 1 + C0/2 and that
converges to 1 away from qs.

This fit is constrained by mass conservation. Indeed, as the
multi-stable gels result from the same carbon black dispersion,
all the gels have the same average number of particles at the
macroscopic scale and in their unit cell. The unit cell is the
minimum structural repeating unit necessary to construct
the gel. In our case, the gel network unit cell is defined by
the structural length xs. The number of particles N = (xc/r0)df in
a unit cell corresponds to the number of particles in the cluster
of size xc and fractal dimension df. This gives a particle density

r ¼ xc=r0ð Þdf
xs3

¼ cste. This constraint is well verified based on

parameters obtained by fitting the SAXS data. As shown in
Fig. 16, r = 7250 � 230 particles per mm3 is constant within a
margin of error of 3%. Moreover, r can be related to the particle
concentration cw provided a good knowledge of the background
oil density dbck = 0.871 (T = 20 1C), the individual carbon black
particle density dcb = 2.26 � 0.03 (T = 20 1C) and the volume of a
carbon black particle vcb. The carbon black density r in the gel

Fig. 14 Comparison of the scattering intensity between the tangential Itan

(green) and radial Irad> (cyan) Irad8 (magenta) configuration.

Fig. 15 Decomposition of the modified Beaucage model as written in
eqn (4). Scattering intensity I(q) as a function of q: experimental data
(black), I2 (pink), I1 + I2 (cyan), I1�S1 + I2 (red).

Fig. 16 Density of particles per unit cell r as the function of the step shear
_g0. r is calculated from the values r0, xc, df and xs obtained fitting the
scattering intensity I(q) plotted in Fig. 6a with eqn (4). The dashed line is the
average.
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is then

r ¼ f
vcb
; with f ¼ cw

cw þ
dcb

dbck
1� cwð Þ

� � (5)

As it is hard to measure ncb given the particle fractal nature,
ncb was evaluated from r. Using vcb = 4/3prr

3 we obtain rr =
8.1 nm a value lower than the radius of gyration of 35 nm
extracted from the form factor measured in SAXS Fig. 7. This
value is a bit smaller because the CB particles are fractal and
polydisperse. Moreover, SAXS measurements tend to over-
estimate the particle size distribution as SAXS is more sensitive
to larger particles. Finally, we might overestimate r as we
assumed that the clusters pack the space homogeneously.
Despite the fact that rr is slightly small, we find r = cste which
tells us that the model is self-consistent.

A.8 The interpenetration /-power law model, a model of the
gel elasticity based on scaling arguments

We assume that the gel is composed of particles of size r0 that
form clusters of size xc and fractal dimension df separated by a
center-to-center distance xs. If xs 4 xc, the clusters are inde-
pendent and the dispersion is a fluid. However, if xs o xc,
clusters interpenetrate each other and form a gel. To model the
elastic constant of the gel network, we follow the demonstra-
tions of the f-power law models proposed in ref. 13, 64 and 65
which allows us to write

G01 ¼
K

L
(6)

K ¼ L

xs

� �dim�2
Keff (7)

f
xs
r0

� �3�df
¼ xs

L

� �3�dim
(8)

with G01 being the linear storage modulus, f the particle
volume fraction, K the macroscopic stiffness of the gel, L the
macroscopic size, Keff the elementary effective stiffness of
clusters and dim the dimension of the network which can be
equal to the dimension of the euclidean space. These f-power
law models are based on building the relationship between a
microscopic stiffness due to the interaction potential between
the colloids and a macroscopic scale through different extra-
polation by means of scaling laws. Then, to demonstrate our
interpenetration f-power law model, we assume that Keff may
be written as follows:

1

Keff
¼ 1

Kc
þ 1

Kext
þ 1

Ki
(9)

with Kc, Kext and Ki being the elastic stiffness related to the
inside of the cluster, the intermicroscopic (see ref. 65) and the
interpenetration of the cluster, respectively. These different
stiffnesses are considered as spring in series as a sketch in
Fig. 17 and as commonly assumed in the literature.65

Let us now quantify Ki. Ki is assumed to be proportional to
the number of contact Ni between interpenetrating clusters:
Ki = Niki, where ki is a reference interpenetration stiffness. The
last expression comes from the fact we assumed that the
contacts in the interpenetration zone are parallel springs: this
justifies the additivity of the stiffnesses. This point has never
been highlighted in the literature and is part of our proposition
for the interpenetration f-power law model. Also, the reference
interpenetration stiffness ki is a hard point in the model.
Indeed, referring to ref. 58 and 59, there may be a competition
between elongation stiffness and bending stiffness. Without
any true experimental insights about the interpenetration zone,
it is hard to disentangle the contribution of each and we will
assume that it is directly related to the depth of the interaction
potential U and the distance of interaction d through ki = U/d2.

Due to the fractal nature of the clusters, there are Ni ¼

6Vi

�
pr03

� �df
3 particles inside the intersection volume Vi between

two clusters. Geometrically assimilating clusters to spheres
lead to an intersection volume (ref. 89 and 90, p. 97)

Vi ¼
p
12
xc

3 2þ xs
xc

� �
1� xs

xc

� �2

1 xs o xcf g: (10)

we assume that each particle brought by each cluster in Vi

forms a contact adding rigidity to the whole system. Therefore,
the number of contact is roughly Ni. Putting together the last
expressions, we get

Ki ¼
U

2d2
xc
r0

� �df

1þ xs
2xc

� �df
3

1� xs
xc

� �2df
3
1 xs o xcf g: (11)

Let us now compare Ki with Kc and Kext. There are different ways
to consider that Ki { min (Kc, Kext). To simplify the compar-
ison, following ref.65, we will write

1

Kc
þ 1

Kext
¼ 1

Kc

Kc

Kext

� �a

(12)

with a A [0,1] allowing to make a transition between the weak-
link regime and the strong-link regime. A first way to compare
Ki with Kc(Kext/Kc)a is to say that the system is in the regime

Fig. 17 Sketch of the contributions to the gel elasticity associated with
the hierarchical structure of the gel.
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xc/xs \ 1. Thus, one can re-write eqn (11) as

Ki /
xc=xs �4 1

U

2d2
1� xs

xc

� �2df
3

(13)

telling us that Ki depends strongly on the distance of xc/xs from
unity. Therefore, Ki is negligible when xc/xs \ 1 compared to
Kc(Kext/Kc)a and eqn (9), we get Keff E Ki.

The other way to consider the system is, following previous
approaches in ref. 13, 57–59, 64 and 65 estimating Kc(Kext/Kc)

a
p

x�ms with m A [1,5] function of the fractal dimension df, the
dimension of the elastic backbone and the regime of strong-link
or weak-link because xs is similar to a cluster size with contact.
Recalling that (xc/r0)df

p xs
3, one gets in this case

Ki

Kc

Kc

Kext

� �a

/ x3þms 1þ xs
2xc

� �df
3

1� xs
xc

� �2df
3
: (14)

Assuming that xs does not vary much, Ki/Kc(Kc/Kext)
a is

governed by the values of xc=xs 7! 1þ xs= 2xcð Þð Þ
df
3 1� xs=xcð Þ

2df
3

on [1.2,1.8]. Referring to Fig. 18, Ki/Kc(Kc/Kext)
a is between 0.1

and 0.3. Therefore, one can assume that Ki { Kc(Kext/Kc)a, at
least for the first values, and following eqn (9), we get K E Ki.

Generally, the more Ki is getting closer to Kc(Kext/Kc)a, the
more difficult it is to consider that only one phenomenon
prevails. If someone wants to completely understand the bal-
ance between the different contributions, she or he needs to
model both phenomena and their coupling. This is not the goal
of this model which tries to give some orders of magnitude
without exhaustively modeling the system.

This final expression of the interpenetration f-power law
model is then

G01 ¼
U

r0d2|{z}
GCB

1

2

xc
r0

� �df

1þ xs
2xc

� �df
3

1� xs
xc

� �2df
3

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
gInterp

f
xs
r0

� �2�df

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
gNet

(15)

expliciting that GCB corresponds to the elasticity arising from
colloid–colloid interaction with U and d, respectively, the depth
and the range of the attraction, gInterp is the elementary scaling
for elasticity to account for interpenetration and may be
changed according to ref. 13 and gNet is the network contribu-
tion from the element of elasticity to the macroscopic scale.
The dimension of the network dim is not required in the final

expression due to the contribution of the effective volume
fraction through the particle volume fraction and the fractal
dimension related to xs.

The difference with the usual f-power law model13 relies on
the fact that Ki = Niki for our interpenetration f-power law
model and Ki = (xs/r0)�2�xki with x the chemical dimension or
the dimension of the elastic backbone for the usual f-power
law model.13 If we assume dim = 3, it is possible to find a

weak-link-like regime13 with G01 / f
1

3�df .
To summarize the approach and the assumptions:
� Most of the ingredients come from the previous f-power

law models building elasticity from microscopic quantities.13,64,65

The scaling between the macroscopic stiffness and the effective
microscopic stiffness is conserved, the colloid–colloid interaction
is conserved without expliciting the relations with bending or
elongation, and the construction of the effective microscopic
stiffness as spring in series is also conserved.
�We assumed the domination in the behaviour of Ki instead

of the other stiffnesses, at least at the beginning of the inter-
penetration. As discussed above, the more pronounced the
interpenetration, the more questionable this hypothesis. In a
fully interpenetrated case, the contribution of each pheno-
menon may be of the same order of magnitude and the
previous demonstration does not hold anymore. The derivation
of an exhaustive model allowing the transition from one case to
the other will be out of the scope of this paper. However, we
encourage future research to dig into this model to make it
complete and exhaustive against the literature and the present
results.
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